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ABSTRACT

The Strategic Detense initiative has generated new

interest in the development ot more stable space structures.

ihis interest has increased the need for more detailed

knowledge of the behavior of engineering structures under

dynamic loading, interests lie in decreasing the amount of

vibration by both passively and actively damping the

structure. A means exists to passively damp structures by

friction damping resulting from relative slip between joint

interfaces. It may be feasible to increase the damping in a

structure by allowing more friction damping than is normal

and thereby controlling the vibr3tion response.

rhis study incorporates friction damping in a one-

dimensional model. Finite element techniques are used to

accomplish the numerical analysis. A clamped-clamped beam

is used as the physical model. [he mid-point of the two

element beam is allowed to slip in rotation, but not in

translation. because the one-dimensional program cannot

handle rotations at continous nodes, the beam is modeled by

symmetry about the joint and a cantilever beam with an

applied end moment is studied.
Ii

Hesults for the response of a beam in vibration are

presented showing displacement of the joint, relative

rotation at the joint, and relative angular velocity at the

joint; all versus time. Various clamping pressures and

vii
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initial loads are explored. Diagrams o the beam shape vs.

time show the shape the beam takes on when slip occurs at

the joint. Frequency calculations show that the perio o+

the response is a++ected by clamping pressure, but not by

the initial loading. Energy loss calculations are presented

+or various clamping pressures.
I!
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CHAPTER 1

INIRUDUCTION

1.1 BACKUROUND

There has been an .ncrease in interest in the 4

stability of large space structures due to the Strategic

Defense Initiative (SDI). A desire exists to mount

sensitive equipment (tracking and reflecting devices)

externally on these structures. The rotation of these

structures could cause vibrations to occur which, if

unchecked, could significantly affect the accuracy of the j

mounted equipment.

Space structures operate in an environment offering no

_ aerodynAntic damping. In addition, the use of low mass and

all -welded construction methods, lacking sufficient inherent

damping, decrease the ability of the structures to reduce

unwanted vibrations (19). Thus, expensive and complex

damping systems -,e needed to achieve the desired levels of

damping. However, friction damping is a method available to

passively damp vibrations in structures, thereby reducing 4

the need for these active damping systems.

Friction damping, the interfacial slip in the Joints

of a structure, is the major contributor to the inherent '

damping of a structure. Usually over 90 percent of the

damping in structures takes place in the joints (2). Three

primary reasons are given for not relying on this mechanism

in the past. First, the small movements between the
1Z1

_ , .°'o



p.

surfaces of the joint can cause fretting corrosion, leading

to fatigue and possible failure of the joint or structure.

Second, by decreasing the stiffness in the joint in order to

permit slip, a relative loss of static stiffness of the

structure is realized. Finally, and probably the most

influential reason, friction forces in the joint are non-

linear. It is, therefore, difficult to determine the force

transmitted across the joint and to predict the effect on

the vibration response of a structure. As a result of these

disadvantages of friction damping, joints are normally

clamped tightly to prevent interfacial slip. This decreases

the damping by the joints to a minimum (6).

The benefits gained by friction damping in joints can

no longer be overlooked. The disadvantages can be overcome

by improving the surface finish and applying joint damping

at selected joints, as opposed to all the joints. Careful

selection of joints where friction damping is obtained by

slip in rotation, but not in translation, need sacrifice

little static stiffness (4). Furthermore, conservative

results may be obtained by linear analysis (5). Therefore,

it may be feasible to increase the inherent damping in a

structure by allowing more friction damping than is pres-

ently allowed, thereby controlling the vibration response.

This technique can help to avoid complex, active damping

systems. Some of the advantages would be lower cost,

achievement of high damping, the ability to move resonant

frequencies, and the ability to use existing Joints (5).

2
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1.2 PURPOSEa, ,'. " ...

A1

The purpose of this thesis was to investigate

frictional damping effects in a beam with a rotational

joint. The major thrust of this effort was to take an
.I

existing finite element computer program, FEMID (15), and

apply friction damping to change the vibration response of

the physical model and thereby show the capability to -

control the vibration response and resonant frequency.

1.3 General Approach and Assumptions

The structure that presented itself most readily to

serve as a physical model for this study was a two element

beam clamped at both ends with a joint located at the middle

node of the beam. A sketch of this set-up is shown in Fig.

1.1a. In the static case, when the beam was subjected to a

vertical load at the midpoint, the beam would deflect and a

moment would build at the joint due to a frictional moment

opposing slip and forcing the slope to remain fixed at zero.

When the moment reached the value of the friction moment,

any further increase of load would cause the joint to slip

and an energy loss would be realized due to the relative

.7. 7
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rotation of the two interfaces. $ new displacement and

slope would be obtained, different from those of the totally

locked joint and the value of the moment at the joint would

equal the friction moment value. ligs. 1.1b and c, show

respectively the cases where the moment is less than the

friction moment and when the beam slips because additional

load is applied once the friction moment is reached. In the

dynamic case, the loss of energy due to slip would be seen

as a decrease in the amplitude of the vibrating beam from

cycle to cycle.

A literature search showed that interest in the field

of friction damping in joints has been around for some time.

However, there is very limited vibration data kvailable in

which friction forces play a significant role (19). The

number of variables associated with friction damping made it

difficult to predict, so it was avoided. But because of

blfl, the number of studies undertaken to predict the effect

of friction damping in joints should increase significantly.

lhrough the judicious use of assumptions, the scope of the

problem can be narrowed so that a starting point can be

obtained.

ihe ability to predict or control the damping produced

by partial slip between surfaces can be accomplished in the

laboratory on only very simple systems (14). I-or this

reason, macroslip was assumed for the joint under investi-

gation. In other words, when the joint was slipping, the

total contact area would be slipping. This leads to the

.j --



FIGURE 1.1a TWO ELEMENT BEAM MODEL

000

FIGURE l.1c SLIPPED BEAM



next assumption regarding the clamping pressure.

The clamping pressure was applied such that it was

evenly distributed across the contact area. If a bolt is

used to apply the clamping pressure, then the pressure is at

a maximum near the bolt location and decreases as you go

away from it. The area near the bolt would be more rigid

and would resist slip more than the outer area. The

increased pressure near the bolt would mean that the

friction moment would be greater near the bolt. In order to

have a constant friction moment across the contact surface,

which the macroslip assumption attempted, a uniform clamping

pressure ips applied. Another asumption was required to

insure a constant friction moment.

The friction force applied to the problem is propor-

tional to the clamping pressure through the coefficient of

friction, p. Since the clamping pressure is applied

uniformly over the contact area, the coefficient of friction

must be constant to provide a constant friction force over

the entire area. This assumption of constants also carries

over to the time-dependent problem.

Since the solution of a vibrating beam is a time-

dependent problem, the clamping pressure and coefficient o+

friction must be constant in time or the friction force will

vary. The first stop is to find a solution for the constant

friction force or too many variables will be introduced to

solve the problem. Hence, the friction force is assumed to

. be constant with time. This leads us to the physical beam

6k
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model.

(A simple beam model that is available is the Luler

beam. Ihe theory of the Euler beam states that a plane

cross-section drawn perpendicular to the centerline of an

unbent beam will remain perpendicular to the centerline

after the beam bends (Y). ]he limoshenko beam does not

require the cross-section to remain perpendicular to the

beam centerline and so more closely approximates the exact

beam (9). the dimensions of the clamped-clamped beam were

chosen such that the results obtained for the first mode

would closely approximate that of the limoshenko beam.

Uonsequently, the simple thin-beam Luler model will give

adequate results for the first mode.

Finally, a modification had to be made to the clamped-

clamped beam model. A one-dimensional finite element pro-

gram was used to model the physical beam and provide the

numerical analysis for the dynamics of the beam. The one-
r

dimensional program did not allow for independent rotations

of the elements at continuous nodes; it forced the slope at

the middle node to remain zero. but for damping to take

place, relative rotations had to occur at the node to dissi-

pate energy. So the beam was changed by symmetry about the

joint to a cantilever beam with an applied end moment. The

slope would be fixed whenever the moment was less than the

frictional moment, and would be allowed to change when the

value of the moment reached the friction moment value. lhis

allowed the rotations required to calculate energy loss.

. . . . .. . -. ° . .

"'];. . 9
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2.1 Coulomb Damping lheory

Coulomb, or dry friction damping arises whenever two

bodies are allowed to slide or rub against one another. For

any sliding to take place there must be a force acting which

overcomes the resistance caused by friction. The friction

force is parallel to the surface and proportional to the

force normal to the surface. The classical law of sliding

friction states that this frictional force is independent of

the contact area and the magnitude of the velocity, as long

as sliding exists (9). The friction force opposes the

relative motion, and thereby continuously absorbs energy so

long as the relative velocity exists. The force of friction

is of constant magnitude and as long as the forces acting

(namely, the inertia force and the restoring force) are

sufficient to overcome the friction force, damping will

continue. When the forces become too small, the damping

stops as sliding ceases.

This can be illustrated by the motion of the simple

spring-mass system of Fig. 2.1.
F _

The mass is set into motion by pulling it in the

positive direction and releasing it. The friction force

acts in the opposite direction of the velocity of the mass.

It is proportional to the force acting normal to the contact .-

.--.. ~-. ;....N % '~-. . ~* - -. v
•
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FIGURE 2.1 SIMPLE SPRING-MASS SYSTEM

surface, in this case the i..ight of the mass. The constant

of proportionality is the coefficient of friction, M. This

constant depends only on the roughness of the sliding

surfaces. rhe force o+ friction is therefore represented by

F., = pW = pmg (2-1)

The equation of motion for this system can be written

as

mx + Fdsgn(x) + kx = (

where the symbol "sgn" represents a function having a value

o+ +1 i+ x is positive and -1 if i is negative, the

*2 equation of motion +or this system is non-linear, but it can

be separated into two linear equations, one for the positive

velocity and one for the negative velocity (12).

mx + kx = -F.3 > 0 (2-3a)

+ kx - F,, X < 0 (2-3b)

The non-linearity consists of switching between the two

linear equations. rhe switching does not occur as an

.. explicit function o+ time, but is determined by the

9 ---

-. ,.. -.- -. . .. . - . **,. *
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response. Ihere+ore, it could occur at various times,

depending on the forcing function and the initial

conditions. rhis means the equation of motion must be

solved for one time interval at a time, depending on the

sign of X.

If the mass is displaced initially in the positive

directir-., the velocit, will be negative at first, so the

first equation is considered. It can be rewritten in the -

form

x + w-X Wf (2-4)

k
where W_ (Natural Frequency of Vibration)

F.,

f k

The initial conditions are x(O)inx. and ;U0)=O so the

solution is (12)

X(t) -(X.. - +.) Cos (w-t) + fd1 (2-5)

This represents harmonic oscillation and is valid for

0 me t 1_ ti, where t, is the time at which the velocity

0 reduces to zero and the motion Is about to reverse. To find

the velocity the equation is differentiated with respect to

time to obtain

;(Ut) -- w-(x.~ - f)sin(w,t) (2-6)

so that the lowest non-trivial solution satisfying the

* initial condition is ti- %w/w, If x(ti) is large enough to

overcome the static friction, the mass will have a positive

velocity and then must satisfy the other linear equation of

10



motIon. Thus the following equation must be solved

x + Wx (2-7)-

with the initial conditions of x(t,)- -(x - 2+.) and

;(t,)=O. the solution is (12)

x(t) (x- -3f+)cos(wt) -+0 (2-1)

This solution is valid for the values of t , _ t - t2 where

t2 is the value at which the velocity again goes to zero.

The value of tv is found to be 2%/w-. The procedure is then

repeated for t > tz, until the motion stops. However, a

pattern is seen to emerge.

Over each half-cycle the motion consists of a constant

component and a harmonic component with the frequency equal

to the natural frequency of the spring-mass system, where

the duration of every half-cycle is equal %/w-. The average

value of the solutions switches between f+ and -fd and at

the end of each half-cycle the displacement is reduced by

2fo - 2mmg/k. This leads to the conclusion that in coulomb

damping the amplitude decays linearly with time, not

exponentially as in viscous damping (12). A plot showing

the decay as a function of time for this simple system is

seen in Fig. 2.2. Fig. 2.2 also shows that the curve

oscillates about the values of f. and -f+ and if the

restoring force falls below this value, the block will stop

sliding at some position on either side of zero, depending

on the initial displacement.

One may associate coulomb friction with rotational A. I

slip by looking at the force of sliding friction coming from

"" 7 .-
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FIGURE 2.2 LINEAR FRICTION DAMPING DECAY (12)

a frictional shear stress at the contact area that is equal

a to p times the normal pressure. This gives an equivalent

result to the simpler cases, such as the sliding block

previously mentioned. This case aids in the solution of

I0....- ,

more complicated systems, such as curved contact surfaces or

non-uniform pressure or velocity distributions (10).

To show this case, assume a frictional moment arises

from the flat end of a circular rotating shaft of radius R

be=ing pressed against a plane surface with a total fcrce N

(10)). Also assuming a uniform normal pressure or compres-

sive stress on the contact area A, we obtain a uniform

frictional stress of magnitude (10)

N juN
-- (2-9)

A %iR:

which is everywhere in a direction normal to a radial line

drawn from the center of the circular contact area. From

Fig. 2.3 it is seen that the moment due to an annular

.-
7-- 
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element of width dr and area 2%rdr is

juN 0
dM - 7<2%r2dr = - 2%rldr (2-10)

FIGURE 2.3 FRICTION STRESS ON ROTATING CIRCULAR SURFACE (16)

The total frictional moment is

2sAN CR 2
M- r,.dr.- NR (2-11)

If Ov 0 the contact surface is said to be perfectly

smooth. If, on the other hand, ~ ,a perfectly rough

surface exists. The first case corresponds to the no clamp

case in which the friction force is zero. The second case

corresponds to the relative velocity at the point of contact

being zero and is referred to as the no slip case (10).

As an extension to this case, Richardson and Nolle

assumed that an external moment applied to a rotary joint is

transferred between the two surfaces by shear due to

friction (16). Fig 2.4 depicts the transfer at the friction

13
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interface. Also, the friction shear stress is considered

constant and occurs only in those regions of the contact

surface where relative slip occurs (lb). As the

Pressure

P

E- .- °]

q "i

FnCt ontneoce

FIGURE 2.4 TRANSFER OF MOMENT BY SHEAR DUE TO FRICTION (15)

applied moment is increased, slip begins at the outer edge

of the contact circle and extends inward to a constant

restoring moment. Fig. 2.5 shows the slipped region for a I-.;

particular applied moment.

CLL

FIGURE 2.5 SLIPPED REGION/DisTRIBUTION OF SHEAR STRESSES(16)

14
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7he moment is applied from zero to a value of M,,.

The inner bounding radius can be calculated from equilibrium

of moments.

M 211r OPdr yields a R 3M/2%PP (2-12)]

Ua
where P - Clamping Pressure

For gross sliding, the slipped region covers theI

entire contact area (a -0), so the moment for gross slip to

occur is

McaFtB~a= 2'KMPRI/3 (2-13)

For any applied moment below Mwmanm the relative slip is in

the microslip stage. At Mmmmww9 macroslip would be said to

to occur. The value of MQnma, can be varied as a function

of clamping pressure. The low and of the macroslip region

occurs at low clamping forces and is known as the no-clamp

case. As the moment increases to Mau..man. the amount of

damping increases until MQmnma is reached. Above Moam

damping decreases in the microslip region until the clamping

P\ACebSLOP MC.0SLIP

DA KP k r- WiA& -1- 5LO

14bCLAn1P POPT N r%

CL rp 4 c, P ItE S A ?_E

FIGURE 2.6 DAMPING VS CLAMPING PRESSURE (11)

15



pressure is so great that no relative slip occurs. This is

the no-slip case. Lazan shows the relationship between

damping and clamping pressure graphically in Fig. 2.6

Damping is maximized at some clamping pressure just above

that required to prevent gross slip (21). This is because

the entire surface undergoes slip and no more damping can

take place than when the friction moment is at a maximum.

2.2 Thin Beam Theory vs the Timoshenko Beam

Thin beam theory states that a cross-section perpen-

dicular to the beam axis prior to beam bending will remain

perpendicular to that axis after the beam bends (9). The

U p

(71 (j -°. 3

1916

I) o -2uSo 4o f "

... .'..:.:.
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limoshenko beam does not require this to happen and

therefore models the real beam better. In an effort to

estimate the amount of error thin beam theory would enter

into the problem, it was compared to Timoshenko theory.

Fig. 2.7 compares a non-dimensional frequency for the .1
Timoshenko beam vs the classical beam (thin beam). The

length to height of the physical beam model gives an L/r j
value of 68. This compares quite well with the Timoshenko

beam for the first mode, as shown by the * in Fig. 2.7.

Errors may show-up for higher vibration modes, but the thin-

beam theory will be adequate for predicting the first

vibration mode.

2.3 Finite Element Theory for Time-Dependent Problems

In time-dependent problems, the undetermined

parameters are assumed to be functions of time and the
m

approximation functions are assumed to be functions of

spatial coordinates. Two stages of solution must be

undertaken, both involving approximate methods. First, the

spatial approximation must be considered and then the time

approximation. This procedure is known as semidiscrete

approximation (in space) (15). The spatial approximation

leads to a set of ordinary differential equations in time.

In structural dynamics, these equations quite often contain

second-order time derivatives of the dependent variables. -

*" .*" The spatial approximation forms the equations of motion in 2
17
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matrix form am

"M](x) + LKJ(x) - (F) 0 < t < to (2-14)

where EM] - mass matrix . --

[K] stiffness martix

(x) = displacement vector jL.:

(F) = applied loads vector

This equation must be further approximated to get a set of

algebraic equations which can then be solved. There are

several schemes available for solving the above equation.

The most common one is the Newmark-Beta direct integration

method (15). The Newmark-Beta method approximates the first

time derivative { } and the function (x}, which is time

dependent, at the (n + 1)st time step (At= constant) as(15)

(x},.-.- {x)- + E(1-r){x)., + (x)}..]At (2-15a)

(x}n+l - {x)- + (X)At + [( - 9)(**I- + j{('}- ,(At)"(2-15b)

whi e 7 and control the accuracy and stability of the

scheme and subscript n shows that the solution is computed

at time t t. The values of 7 - q and I t are normally

chosen because they provide for an unconditionally stable

system. This means that the size of the time stop is

goverened by the need for accuracy rather than stability.

This scheme, known as the constant average acceleration

method (15), is very valuable in computing the response of

systems in which damping is introduced externally because

the method itself does not introduce any damping. Equations

(2-14) and (2-15) can be combined and rearranged to get (15)

.K]{x} ,- (F)-., (2-16)

18
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A
where 1K] - [K] + I [(M]).'

A - "

{F)-,= F}- + [MJ(ao(x)_ + a(x - +a2 (x}.-)

Given initial conditions of {x)o, (X)o, and {(xh, equation

(2.16) can be solved repeatedly for ix). If the initial

value of the acceleration is not given, which is usually the
*5

case, equation (2-14) can be used to compute {x) at t - 0.

After calculating {xI at t__21  (n+l)At, the first and

second derivatives (velocity and acceleration) of (x) at

t-- can be found by rearranging equation (2-15) (15)

= ao({x}.-,.. - {x},.,) - aI(xI. - a(x}- (2-17a)

x-= +x, + a:(x.- + a.(x.- 1  (2-17b)

where ao = lI/E(At)-J a, - aoAt am - (1/2S) - 1

a3= (1 - 7)At a. I-A ,,:o

Given initial conditions of (x)o, (X)o, and (X) 0 , equation

(2.16) can be solved repeatedly for (x) and its time

derivatives at any time t > 0.

Newmark-Beta is unconditionally stable, as previously

mentioned, which means the solution does not grow without

limit. However, if the right time step is not chosen the

results may be inaccurate. An estimation for the time step

is given by (15)

At T_, / (2-18)

where T_,* is the smallest period of vibration given by the

problem. This assures not only a stable solution for any At

but also accuracy of results. The smallest period in the

clamped-clamped beam occurs when the joint is fully clamped.

The period was obtained from the unmodified FEMID program.

19
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ihe value was U.0U74074 sec. Substituting this number into

Eqn. (2-18), a At of 0.0023579 was computed. Therefore, any

value of At below this number would guarantee accuracy of

results. The value of At 0.0001 was chosen for

calculation in the Newmark Beta method in an effort to

obtain increased accuracy.

Fig. 2.8 highlights the main steps of the Newmark Beta

time integration method. Fig. 2.9 compares the accuracy of

the Newmark Beta method with other numerical analysis

methods and the exact solution. The problem being solved in

Fig. 2.9 is a two element axial rod clamped at one end. The

top plot shows the axial displacement of the middle node and

the bottom plot shows the axial displacement of the node at

the free end. Notice that while the other numerical methods
0o

display some form of amplitude decay, the Newmark Beta

method does not. However, Newmark Beta does exhibit some

period elongation, and this should be considered if accurate

frequency calculations are required.

IL20'4.
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FIGURE 2.6 NEWMARK BETA 1IlEGRAlIODN ME1HOD

A. Initial Lalculations

1. Form K, and M.

2. Initialize x-,;-., and X*.

3. Select time step At, 'v and 7 a: 15, a:~ '*(0.5 + 4 11-

and calculate:

=z At (1-7) ;a-ft - TAt

A
4. Form the matrix K K + ac.M.

B. For each time step

1. Calculate the effective loads at time t + At 9

A
=f * Ft...A* + M(aoXt- + azX*. + asx..

2. Solve for the displacements at t +- at

All

3. Calculate the accelerations and veoiisa + -A

X*..-A*- w a>(x--At - X0l - aiXt a2Xtt

xt...A* + t4 azs** -+axt.A
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HAP I EN S

THE DAMPINU MUVEL

3.1 [HE bLAM IN SI(UIlC BENUINU

lhe physical dimensions of the two element beam arrangement

can be seen in Fig. 3.1. However, because of the

limitations a+ the FEMID computer program, the actual beam

model that was used in the computer analysis was a

cantilever beam with an applied end moment. The beam was

made of steel; the material properties and related

calculations to be used in the computer analysis can be I

found in Appendix 1.

I 0.-O. 02.i

-4-,- ..0254--

FIGURE 3.1 PHYSICAL BEAM DIMENSIONS

The computer program allowed certain boundary

conditions to be fixed, so initially it was assumed that no

slip would take place and the slope at the tip was +ixed at

3
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zero. As a vertical load was applied, a moment was

generated to keep the slope fixed at zero. If the value o+

MQD was not equaled, then no slip took place and the beam

would behave as a normal clamped-clamped beam in bending.

When the value o+ the moment reached the value of MGROSS,

the next increment of load would cause the joint to slip

because, due to friction, the joint cannot hold any more

moment than the value o+ MaoE. At this point, the

boundary conditions were changed and the restriction that

the slope remain zero was removed. A moment equal to the

value of MoFQRo was applied opposite to the direction o+

impending motion, and slip occured due to the change in

slope. A new value of displacement and slope were found,

- Odifferent than the value for the clamped-clamped beam. Fig.

3.2 shows the shape of the beam and equation that is solved

for the static beam where the moment does not equal M~rDs.

FIGURE 3.2 UNSLIPPE) SIA'rIC BEAM

Unce slip occurred, a new equation was solved because ot the

*boundary condition change. This is seen in Fig. 3.3.

24
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GRCS

F IGURE 3. 3 SLIPPED STATIC BEAM

The solution of the beam in either case can be verified by

superpositon once the value of the moment is known. The

equations of superposition for beam bending by an applied

load and moment at the tip of a cantilever beam are (7)

PL-f, ML PL"? ML
+ ND k3--(31

S3EI 2EI 2EI El

where w =displacement

8 =slope

P =applied load

M applied moment

L length

E modulus of elasticity

1 =Moment ot inertia

3.2 (HE bL(M IN DYNAMIC SENDINU

Once the static Solution was found, the displacement

Fhe initial boundary conditions are such that the slope is

25



fixed at the value calculated from the static problem. The

beam is then set into motion by removing the initial

vertical load. The beam begins to move with some velocity,

(see Fig. 3.4). Initially, the moment that was held at

the joint, the value of MQtoBB, is relaxed because of load

removal. However because the slope is not allowed to change

the moment begins to build again. The following

differential equation now applies

Mx + Kx = F (3-2)

where M = global mass matrix

K - global stiffness matrix

F = applied loads (F = 0 0, 0 }')

Remember that the static equation was just

Kx F (3-3)

The motion of the beam requires the inclusion of the

acceleration terms in the problem. This presents two new

terms in the calculation of the moment to compare against

McaotUM. The moment calculated was therefore

M M-*13w2 + M 4 482 + K 4 3 w7 + K 4 4 8m (3-4)

where the displacement and acceleration vectors are obtained

by solving Eqn. (3-2) by the Newmark Beta method. Appendix 2

shows how the boundary conditions are applied to determine

which terms will appear in the dynamic moment calculation.

Now when this moment equals the value of Mmnoaan slip will

occur with the next incremental increase in the moment. It

can be seen that initially E is zero, but after slip occurs

an angular acceleration term will appear and figure into the

26



moment equation. The n.w equation that must be solved once

slip occurs is

Mx + Kx = F (3-5)

where F = applied loads (F = ( 0, M"RDf )').

Fig. 3.4 shows the conditions that exist once slip occurs.

4.,

FIUURL- 3.4 DYNAMIC BEAM WITH 8 < U .

Once the slip mechanism is turned on, some method must

be available to turn it of+. In +riction damping the

friction force acts opposite the direction of motion of the

system. In this case the motion is rotational, so the

friction moment opposes the angular velocity of the joint.

Therefore, the angular velocity should play some part in

monitoring when slip at the joint had stopped. When slip

ceases, the angular velocity should be equal to zero. (At

this point, the slope was fixed and the friction moment

removed. The beam would then begin to move in the opposite

direction and the process would begin again. Fig. 3.5 shows

this case. lhe moment at this point is positive, but it

decreases with time until it becomes negative. When the

absolute value of the moment on this stroke equaled the

27 " ""



value of M, og, the slope was allowed to change and the

friction moment was applied in the opposite direction of the

motion. This is illustrated by Fig. 3.6. Ihe process wouil

continue until the moment no longer equalled the value of

MQo and the beam would oscillate from then on with some

permanent slope. Fig. 3.7 shows the logic implemented to

solve for the damping at the joint of a vibrating beam. The

major modifications were made in the STRESS subroutine of

the FEMID program (15). The actual Fortran code for this

subroutine can be seen in Appendix 3.

-1

FIGURE 3.5 DYNAMIC BEAM WITH B~=U
MtaS

4-2

FU 3

FIGURE 3.5 DYNAMIC BEAM WIT'H 82 = 0"-'--
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I-IGUL 5./ LUUIL U- IHL FRILJIIUN VAMPINi M LUHANISM

For the initial loading of Fig. 1.1c, the flow of the
damping mechanism would be:

A. For each time step when not slipping

1. Laiculate MoD"

= 2~P~-~,5~- onstant

:. Lalculate M

M = 1,w 2  + M14 4I + K1a.zw, + K,^::-

6. Lompare M vs MQFzor

a. If IMI . MMroDW Go on to next time step

b. f I MI Ma o,

1 . Remove fixed slope condition

2. Apply tip moment equal to:

a. MMGt~r- If +i M >

b. -MmDzmaif 21 + UM

S. Uo on to next time step in part B.

B. For each time step that slip is occurring

1. IM UR O

2. Lheck angular velocity, 8z

a. 1+ M> 0

1. If + < U Uo on to next time step

:e. If + 2 t o

a. Fix slope at present value (Om - Constant)

b. Remove tip moment

c. Uo on to next time step in part A.

29
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I+ M ,

I+. i .> u Lo on to next time step

.:~~. If u., -

a. >-ix slope at present value (8- = Lonstant)

b. Hemove tip moment

c. bo on to next time step in part A. - ...

03
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CHAPTER 4

RESULTS -

4.1 THE STATIC BEAM

-he response o+ the static beam in bending was readily

calculated once the friction moment was obtained. Ihe

method consisted of applying superposition when the value of

M~oz was reached. lhe applied load and moment would then

give a displacement and slope at the end node. The values

for the the static problem were used as the initial dis-

placement vector for the dynamic problem. Since this is

where the interest lies, emphasis is placed on the results

of the vibrating beam. "'

4.2 THE DYNAMIC BEAM

The beam was met into motion with the slope at the

joint fixed by removing the initial load. When the dynamic

moment reached the value of Mmww, the boundary condition

that kept the slope fixed was removed and a friction moment

equal to the value of MQmc3 was applied in opposition to

the value of the angular velocity. The joint was allowed to

slip until the angular velocity reached zero. ihen the

slope was fixed at the value it had reached at that time and

the moment was removed. ihis process continued until the

slope remained fixed continuously and no more slip took

place. the values that were deemed important were

displacement, slope, and angular velocity. All three of

these quantities were plotted versus time to determine how

the beam model was responding as a function of time. Figs.

~314 1> ..
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4.1 through 4.4 are plots of the translational displacements

versus time for various clamping pressures. Note how the

maximum displacement decreases as the clamping pressure

increases for an initial applied load of 1U,UUU N. The

maximum displacement occurs at zero clamping pressure and

the minimum at the fully clamped case. At low clamping

pressures, damping takes place over a longer time period

because of the small value of MEoa&, while at the higher

clamping pressures, damping takes place for only one or two

hal+-cycles.

Figs. 4.5 and 4.6 show plots of slope at the joint

versus time for two clamping pressures. At the lower

clamping pressure, the slope was seen to level of+

periodically and then continue after it had been fixed for a

few time steps. This was confusing until the angular

velocity versus time plots were examined. These plots are

shown in Figs. 4.7 to 4.9.

The angular velocity versus time plot for zero

clamping pressure, Fig 4.7, exhibited an unexpected

response. Note that a high frequency response is superim-

posed on a lower frequency. It was determined that two

modes of vibration were showing on this plot. The lower

frequency trace was the first mode of the beam and the

higher frequency in between was the second mode due to the

rotation of the end of the beam. When the clamping presure

was increased to W.OL06 N/m, both modes were seen to damp

out, as would be expected. The higher frequency second mode

32,..:.
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damped out first, and the first mode then continued on

because there was no structural or viscous damping modelled.

Frequency was plotted as a function of clamping

pressure and the lower clamping pressures gave lower

frequencies. As the clamping pressure was increased, the

beam became more stiff, and so the frequency increased.

This is seen in Fig. 4.10. Note that the range of

frequencies is bracketted by the values obtained for a

cantilevered beam at the low end and a fully clamped beam at

the high end.

The slope at which the joint finally locks up, the

permanent set, is a function of the initial load and the

clamping pressure. It can lock up at a positive or negative

slope. Figs. 4.11 through 4.13 depict w2, 82, and 82 versus

time respectively for an initial load of 10,000 N and a

clamping pressure of 9.5E08 N/m . The permanent set, which

was a negative slope for most of the previous runs, is now

set at a positve slope. The same effect could have been

achieved for a constant clamping pressure and varying

initial load. The beam then oscillates about some

equilibrium point other than zero. The equilibrium point

could also be either positive or negative, again based on

the initial conditions.

The shape of the beam was plotted as a function of

time. Figs. 4.14 and 4.15 show the shape of a fully clamped

joint, so that the slope at the joint remains zero. Figs. "'-'.7

4.16 thru 4.18 are for a clamping pressure of B.0OE6 N/m7.

42
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Initial Load isl,0)
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_7W: r W.

Fully Clarn'ed Beam
Initial Load is 10,000 N
Timeste- is 0.0001 sec

7- ------
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C~an~:~< recsure is 8.Ojcx i /ni
Initial Load is 10,00j. N

Timete~i~s 'J.0O01 sec
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Initlal Ljai1 is i0,000. N
Timestt, i_. U.0001 sec

''

1

.00 .25 .5c .7F .~ .,

FIGURE 4.17 Beam Shape vs. Time
Second Half-Cycle
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rhe slope and displacement are seen to vary significantly

because the small value of Muzoo is reached almost

immediately. Figs. 4.1Y and 4.2U are for a clamping

pressure of 8.EEO N/m2. ihe displacement is damped a large

amount in the first half-cycle, and the remainder is damped A

in the next hal+-cycle. ihe beam then vibrates with a fixed

slope of -U.UIUlW rads at the joint.

Fig. 4.21 is a plot of moment versus slope for a

moderately large clamping pressure of 8.OEO N/ma and shows

a hysteresis loop for the damping taking place at the joint.

If the joint were excited by a cyclic load, the loop would

be closed. Damping takes place on the horizontal lines of

the loop, where the moment is constant and the slope is

changing. This allows the energy loss to be calculated by

multiplying the moment by the change in slope. Remember

that before damping begins, the dynamic moment must equal

the gross moment. The program was unable to reach the gross

moment exactly, so some overshoot of the gross moment is

seen. These are the spikes just before the line turns

horizontal. One other spike is seen on the upper horizontal

line. This is a point where the angular velocity changed

sign and so the routine fixed the slope at the current

value. However, at the next time step the moment exceeded

the value of MaRonma so the slope was freed and damping

continued. The loop starts at the far right and ends on the

inner vertical line. The value of Manama is not reached

,"-after the first two damping cycles for the initial r.r..,"
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4

conditions given, so the moment varies up and down the line

which indicates a constant slope of -0.01018 rads.

[able 4.1 shows the percent of energy lost during the

first half-cycle and a full cycle for various clamping

pressures and an initial applied load of 10,000 N. Note

that the results for the first hal+-cycle show an increase

in damping as clamping pressure increases. but, the numbers

reach a maximum and then decrease for the damping done in

one cycleas clamping pressure increases. This is better

illustrated in the plot of Fig. 4.22.
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CHAPTER 5

CONCLUSIONS

the tinite element method is capable of predicting the I
amount o+ energy lost due to friction damping at the joint

of a simple beam structure. it was able to calculate

slopes, displacements, velocities, and accelerations, as

well as the frequencies associated with them. Lnough i

information was obtained that the actual shape of the beam

could be plotted. The modified one-dimensional program

provided data that appeared accurate despite the inadequacy

of the original program to handle the independent rotation

degrees of freedom at the joint. ihe problem was simplified

0. by the assumptions made, but the results have opened the

door for continued investigation of the friction damping

phenomenon.

4 higher mode o+ vibration was seen on the angular C
velocity versus time plot, but the accuracy for the

frequency is debatable because only one element was used.

The use of only one element made the beam stiffer than it L

really was, therefore the frequency of the second mode would

be higher than it should be. This could be corrected by

using two elements. Higher modes would be introduced, and

their accuracy would depend on the number of elements used.

The errors encountered by not using smaller time steps

and actually stepping over the values of Mmmous and the

angular velocity when turning the damping mechanism on and

59 2"
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ott did not a fect the results obtained, lhe hysteresis

loop shows that the +riction moment was exceeded rather than

equaled, but at the next time step the value at the joint is I -

the value of M[ro. bo the time step chosen was more than

adequate to give accurate results.

Ihe displacement, w?, is seen to decrease as the t .

clamping pressure increases. This correlates to the percent

energy loss +or a half-cycle and a full cycle. ihe percent

energy loss for the first half-cycle increases as the

clamping pressure increases. However, it reaches a maximum

and begins to decrease as clamping pressure increases for a

full cycle.

The frequency increases as the clamping pressure

increases. This can be explained by the beam becoming

stiffer and the period decreasing. ln other words, the beam

vibrates +aster. For a given clamping pressure, the

frequency remains constant for any initial applied load.

The amplitude varies with the load, but the frequency does '

not.

The accuracy of the results are unknown as no data was

available to compare with. However, the trends observed

indicated that the data obtained was a good first estimate

for the amount of friction damping.
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LHA-'IiLR 6

RECOMMENDAT IONS

lhis thesis has opened the door for many follow-on

studies to be accomplished. As many questions as were

answered, many more new ones were asked. Some additional

work that could be completed in this area is:

1. A two-dimensional finite element program could be used

to verify the results obtained by the modified

one-dimensional program.

2. An investigation into the higher modes could be made

using more elements in the beam model.

3. The assumptions could be relaxed to allow more variables

to come into play, such as; -

a. Allow the clamping pressure to vary from a maximum at

the point of application to some lesser away from the point

of application.

b. Allow partial slip. This would mean the joint would

always be in some form of slip once a break-away value was

exceeded.

c. Allow the coefficient of friction to vary with time

61
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to simulate wearing o+ the contact surfaces.

4. Finally, the problem should be accomplished

experimentally to obtain same laboratory values to compare

:gainst the numerical integration methods.
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APPENDIX A

Beam is made o+ steel

M 0.3 7827. 109.S Kg/rm-- E =2.OEl1 N/rn-

Area of cross-section =bh (0.012/n)(0. O2b4n)

-3.22bBE-04 rn

=A 2.524689 Kg/rn

I- (1/12)bh-5 - (1/12) (0.012/n) (0.02b4rn) - 1.7 5429/6E-08 m

El -3468.5952 Nrn2

Area of contact surface - WRd (02r) 5.06'/0Y/4L-04 ml

MmN~/~a- (1.28d/06 /L-06 rn3 (P- N/m ) Nm
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APPENDIX B

lhe di++erential equation +or the dynamic problem consists ....-

o+ the tollowing terms:

M11 .I. .11 I 2K i K -- K z i 2F

M7I Mi! Mza MM 4  Wi Kmi K1  Kz3 Km4 Wi Mi

+

M:3 1 M:3= MS3 M: 3 4  WK K:3 i K3= Ks3 K'4 WM"

MA, MAM MM M-44 8P K4i K-4 K m K-44 8!: M

rhe clamped boundary conditions at the first node

(w, = U= ) allow the +ollowing simplification to be made:

M~z MM 4 W:2KNs :- W21 Fz

r MM
Therefore, the moment required to compare against Mmmo0w is

MM = MA4 W + MA44 + Kvsw 2 + K448. I 2

Ihe displacement and acceleration vectors are obtained by

numerical analysis, the Newmark Beta method in this case.
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APPENDIX C

SUBROUTINE STRESS(NPE,NDF,IBEAM,IELEM,W0,ELX,N,NEM,IFLAG,NT,
*VBF,INITIAL,BXO,KICK,FORCE,R,FRICTION,ITEM,IBF,VBDY,IBDY,
*KOUNTGFGF1 ,GF2,T)

C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C X.......... GLOBAL COORDINATE
C XI .........LOCAL COORDINATE
C SF......... ELEMENT INTERPOLATION FUNCTIONS
C GDSF .......FIRST DERIVATIVE OF SF W.R.T. GLOBAL COORDINATE
C GDDSF .. ..SECOND DERIVATIVE OF SF W.R.T. GLOBAL COORDINATE
C WO .........COLUMN OF GENERALIZED DISPLACEMENTS
C W.......... INTERPOLATED GENERALIZED DISPLACEMENT
C DW......... FIRST DERIVATIVE OF W: DW/DX
C DDW ........SECOND DERIVATIVE OF W: D(DW)/DX
C
C NOTE: W, DW, AND DDW ARE COMPUTED AT NINE POINTS OF EACH
C ELEMENT (DW AND DDW ARE NOT EXPECTED TO BE ACCURATE
C AT THE NODAL POINTS OF THE ELEMENT)

C- - - - - - - - - - - - - - -- - - - - - - - - - - - - - -
C

IMPLICIT REAL*8(A-.H,O-Z)
COMMON/STRS/XG( 18) ,W( 18) ,DW( 18) ,DDW( 18) ,NBDY,NBF,B43,B44,
*G43 ,G44 ,VT,VT1

00 COMMON/SHP/SF(4),GDSF(4),GDDSF(4),GJ
DIMENSION GAUSS(9) ,W0(4) ,ELX(4) ,VBF( 11) ,IBF( 11) ,VBDY( 11),
*IBDY( 11) ,GF( 4) ,GF1 (4) ,GF2(4) *-.-

DATA GAUSS/-1.ODO,-0.75D0,-0.50D0,
*..0.25D,.ODO,0.25D0.50D0,

C * O.75D0,1.ODO/

NET=NPE
IF(IELEM .EQ. O)NET=4
H = ELX(NPE)-ELX(l)
DO 85 NI=1,9
XI = GAUSS(NI)
CALL SHAPE(XI,H,NPE,NET,IELEM)
NN=(N-1 )*9+NI
XG(NN) = 0.5*H*(1.0+XI)+ELX(l)
W(NN)=0.0
DW(NN)=0.0
DDW(NN)=0.0
DO 60 I=1,NET
W(NN) = W(NN) + SF(I)*WO(I)
DW(NN)=DW(NN)+GDSF( I)*WO( I)
IF(IELEM .NE. 0)GOTO 60
DDW(NN)=DDW(NN)+GDDSF(I)*WO(I)

60 CONTINUE
IF(IBEAM.EQ.O)GOTO 85
IF(N.NE.1.OR.NI.NE.9)GOTO 85
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IF(ITEM.GE.1)GOTO 55
q ZGROSS=(2*FRICTION*3. 14159*FORCE*R**3)/3

C PRINT*,IZGROSS= ',ZGROSS
Z=BXO*DDW( 9)

C PRINT*"' Z= ',Z
IF(Z.LE.ZGROSS)GOTO 85
NBDY=2
NBF=2P IBF(2)=4
VBF( 2) =-ZGROSS
IFLAG 1
GOTO 84

55 ZGROSS=(2*FRICTION*3.14159*FORCE*R**3)7/3
PRINT*,' ZGROSS= ',ZGROSS
Z=G43*GF2(3)+G44*GF2(4)+B43*GF(3)+B44*GF(4)
PRINT*,' Z= ',Z
IF(VT1 .GT.0.0)THEN
IF(VBF(1).GT.0.0)GOTQ 75
IF(ABS(Z).LE.ZGROSS)GOTO 84
GOTO 50

75 NBDY=3
NBF=0
IBDY( 3)=4
VBDY(3)=WO(4)
GF1 (4)=0.0
GF2(4h=0.0

VBF( 1)=O.0
GOTO 84

50 NBDY=2
NBF=1
IBF( 1)=4 .

VBF( 1)=-ZGROSSI GOTO 84
ENDIF
IF(VBF(l).LT.O.O)GOTO 75
IF(ABS(Z).LE.ZGROSS)GOTO 84
IF(Z.LT.O.O)GOTO 50
NBDY=2
NBF=1
IBF(I1)=4
VBF( 1)=ZGROSS

84 PRINT*I'VBF(1)= ',VBF(l)
85 CONTINUE

PRINT*f'GO ON TO NEXT TIME STEP; NT,KOUNT =',NT,KOUNT

90 RETURN
END
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